إنجازٌ تكنولوجيٌ جديدٌ.. ترانزستورات نانويَّة ثلاثيَّة الأبعاد

علوم وتكنلوجيا 2024/11/12
...

 ماساتشوستس: وكالات

تُعدُّ ترانزستورات السيليكون، هي العمود الفقري للإلكترونيات الحديثة، فهي المكون الأساسي في معظم الأجهزة الإلكترونية، ابتداءً من الهواتف الذكية ووصولًا إلى الحواسيب العملاقة، ومع ذلك، تواجه هذه الترانزستورات تحديًا جوهريًا يحدُّ من قدرتها على العمل بكفاءة عالية.

ويعرف هذا التحدي باسم (طغيان بولتزمان) Boltzmann tyranny، وهو حدٌّ فيزيائيٌّ يمنع ترانزستورات السيليكون من العمل بكفاءة عالية عند جهد كهربي منخفض، ويعني ذلك أنَّ هذه الترانزستورات تستهلك قدرًا كبيرًا من الطاقة لتشغيل الأجهزة، ما يحد من عمر البطارية ويولد حرارة زائدة، ومع تزايد طلب الأجهزة الإلكترونية العالية الأداء، مثل تلك المستخدمة في مجال الذكاء الاصطناعي، أصبح التغلب على هذا التحدي ضرورة ملحة.

في خطوة نحو تجاوز هذه القيود، تمكن باحثون في معهد ماساتشوستس للتكنولوجيا من تطوير نوع جديد من الترانزستورات الثلاثية الأبعاد، التي تتميز بتركيبة فريدة من المواد شبه الموصلة الفائقة الرقة البديلة للسيليكون، التي تسمح لها بالعمل بكفاءة عالية عند جهد كهربي أقل بكثير من ترانزستورات السيليكون التقليدية.

تعمل ترانزستورات السيليكون في الأجهزة الإلكترونية كمفاتيح، فعندما نطبق جهدًا كهربائيًا عليها، فإنها تسمح للإلكترونات بالمرور عبرها، وتتحول من حالة (إيقاف) إلى حالة (تشغيل)، وبذلك تتمكن الترانزستورات من تمثيل الإشارات الرقمية (الصفر والواحد)، التي تشكل أساس جميع العمليات الحسابية في الأجهزة الإلكترونية.

ولكن هذه الترانزستورات تواجه تحديات تمنع عملها عند جهد معين في درجة حرارة الغرفة، ما يؤدي إلى استهلاك كبير للطاقة، ونتيجة لذلك فإن الأجهزة الحديثة التي تعتمد على السيليكون لا تستطيع تحقيق الأداء المطلوب بأقل استهلاك للطاقة.

ولتجاوز هذه القيود، طور الباحثون ترانزستورات بمواد أشباه موصلات جديدة، وهي: (أنتيمونيد الجاليوم) Gallium antimonide، و(زرنيخيد الإنديوم) indium arsenide، واستغلوا ظاهرة فريدة في عالم الكم تعرف باسم (النفق الكمومي) Quantum Tunneling، التي تسمح للإلكترونات باختراق حواجز الطاقة بدلًا من تجاوزها بشكل مباشر. ويعني ذلك أنه يمكن تشغيل الترانزستور وإيقافه بجهد أقل بكثير مما هو مطلوب في ترانزستورات السيليكون التقليدية، مما يؤدي إلى تحسين كبير في سرعة الترانزستور.

وقد استخدم الباحثون أحدث التقنيات المتاحة في منشأة (MIT.nano) المتخصصة في الأبحاث النانوية لتطوير ترانزستورات نانوية ثلاثية الأبعاد تتميز بهياكل غير متجانسة من الأسلاك النانوية الرأسية التي يبلغ قطرها 6 نانومترات فقط – وهي تُعدّ أصغر ترانزستورات ثلاثية الأبعاد طُورت حتى الآن – مما سمح لهم بتحقيق (منحدر تبديل) حاد، ويعني ذلك أن الترانزستور يمكنه التنقل بسرعة بين حالتي التشغيل والإيقاف بأقل طاقة ممكنة.

وقد أظهرت التجارب التي أجراها الباحثون على هذه الترانزستورات أنها تحقق أداءً يفوق الأنواع التقليدية بنسبة تبلغ 20 مرة.